カテゴリー別アーカイブ: houdini

Houdini Husk Procedural

先日作成したクマのぬいぐるみアセットに
Houdini 19.5から導入されたHusk Proceduralsを組み込んでみた。
今回は9体のファーキャラクターをレンダリングできるかのテストを行った。
(アニメーションはVellumコンストレイントを使用して作成)

Houdini Fur Vellum sim from Shuichi Sakuma on Vimeo.

Husk Proceduralはレンダリング時にファーデータをメモリ上に展開し、ファーを生成するプロシージャ(関数)。
これによって作業時の表示は常にガイドカーブのみになり、Hydraレンダラーが走ったときのみファーが生成されるようになる。(昔のmentalrayのジオメトリシェーダのようなもの)

このプロシージャにはGenerateモードとDeformモードがあり、
簡単に言えばガイドカーブのみにグルーミングがある場合はGenerateモードを使用し
ファーカーブに対してもグルーミングを行っている場合にはDeformモードを使用する。
今回はファーカーブに対してクランプを行っているためDeformモードで使用した。

Husk Proceduralによって1台のマシンでも複数のファーキャラクターを無理なく扱えるようになった。ちなみに、Husk Proceduralを組み込んだcurve primはアイコン画像が変わる。

Houdini 19.5のHusk Proceduralはファーだけの対応のようだが、
以下のSideFXのプレゼン動画を見ると今後その種類は増えていくようだ。

Houdini Vellumシミュレーション

先日作ったクマのぬいぐるみにアニメーションをつけてみた。

ジョイント等は使用せず、基本はVellumコンストレイントの切り替えのみで作った。
Houdiniはキャラクターアニメーションにも柔軟にダイナミクスを組み込むことができる。

Houdini Fur:Karma XPU レンダリング

今回はHoudiniのFur機能を使ってクマのぬいぐるみを作成してみた。
Solaris内で複数のインスタンスを作成し、インスタンスごとにファーのバリエーションを作ってからKarma XPUでレンダリング。モデリングから全てHoudiniで作成。
今回はそのワークフローの備忘録。

 

① Solaris内でTabキーを押して”Component Builder”を選択し、以下のテンプレートを作成。


② SOP Importを作成し以下の場所に接続。クマを構成するファー・スキン・眼球ジオメトリをSOPからそれぞれ読み込む。

③ MaterialLibrary内にKarma Hairマテリアルを作成。ここでMtlX Geometry Property Valueノードを作成してUSDアセットのインターフェースを作成しておく。ここで作成したインターフェースはInstancerノードの内部からVEXなどを使用して同名のアトリビュート経由で制御可能となる。作成したインターフェースはテクスチャーから取得したテクセルカラーを変調するための[色相、彩度、明度]の3つのパラメーター。(名前はそれぞれhueShift、satShift、valShiftとした)

④ Component Outputノードを使用してUSDファイルへ書き出し。これによってクマのジオメトリ(geo)とマテリアル(mtl)が一つにパッケージ化される。

⑤ AssetRreferenceノード(アイコンはクマ!)を作成し手順4で保存したUSDファイルを読み込む。さらにInstancerノードをつなげておく。

⑥ Instancerノードの内部でポイントを作成する。ポイントに対して手順3で作成した[色相、彩度、明度]の3つのアトリビュートを作成。名前はUSDアセットのインターフェースと同じ名前(hueShift、satShift、valShift)にしておく。それぞれにVEXのrand関数などで値を設定。

 

⑦ ライト・カメラ・レンダリングの設定を行い、ビュー上でKarma XPUでインタラクティブレンダリングを行うと、インスタンスごとにファーの色調の変化が確認できる。

<補足:Karma Hairのメラニン設定とその結果>

ビル破壊シーン バージョン2

先日Houdiniで作成した破壊シーンのバージョン2の動画をアップ。
カメラワークを一部修正。

レンダリング中はマシンの発熱がすごい。
デロンギのオイルヒーターくらいの温度になるので、
レンダリング中はPCが暖房器具になる。

作業PCは天板から放熱するエアフローのため
寒い日にはエルがよくPCに乗って暖を取っている。

Houdini Skyscraper Destruction(高層ビル破壊)

今回、映画「トランスフォーマー3」のあるシーンを参考にして
ヘビ型のロボットを高層ビルに巻き付かせてビルをなぎ倒すシーンを作ってみた。

モデリング、アニメーション、シミュレーション、レンダリングはすべてHoudiniで行った。
コンポジットはNuke。

ヘビ型ロボット(劇中では”Driller”という名前)の基本的な動きはVEXでプログラム制御し、
さらにロボットの微震のためにVellumも使用した。

高層ビルのアセットは自分が書いたHoudini本(SOP&VEX編)を見ながら作成した。

今回のシーンはデータサイズが巨大だったため、キャッシュサイズだけでも3T以上となった。
データの規模的には以前作成した水のキャラクターを超えたと思う。

レンダリングはKarma XPUを今回始めて使用。
ベータ版ということで一部未実装な部分はあるが、今回のシーンでは問題なく使用できた。
使用感としては「とにかく速い!」の一言。
Karma XPUは数秒で最終的な絵に近い状態で確認できるため、作業効率の向上につながった。

ただ、レンダリングフレームによってはGPU側のメモリ割り当てのエラーが出て
自動的にCPUのみのレンダリングとなった。
これは使用しているグラボのメモリが8GBしかないため、GPU側のメモリに必要なデータが
全て転送できなかったためだと思われる。

今回はHoudiniのRBD、Vellum、POP、Pyroをフル活用して作ったが、
一昔前に比べてダイナミクス周りは格段に使いやすくなっている印象を受けた。
また今回の制作では「いかに壊すか」よりも「いかに壊さないか」に時間を費やした。
(そもそもHoudiniを使えば「壊す」ことは簡単にできるので…)

▼制作環境
CPU : Ryzen Threadripper 3970X(32コア)
GPU : GeForce RTX 3070
メモリ : 128GB
ストレージ : 12TB

ちなみに以下の動画は同じテーマで5年前にチャレンジしたもの。
5年間でそれなりに進歩はしたと思う。

Houdini Spider リグ

Houdiniで蜘蛛のリグを作ってみた。

ベースは2年前に作ったものをカスタマイズ。
KineFXをベースにして、蜘蛛の足の運びを作るためにサイクロイド曲線をVEXで実装して使用した。
また、リグに対する外装パーツ装着のためにジョイントのベクトルを操作する必要があったため
そこでもVEXを使用した。

以下は作業画面。
手動で動かすのは頭頂部分だけで、残りのパーツは全て連動して動くようになっている。
キャラクターのリグが複雑になればなるほど、Houdiniのプロシージャルな制作手法のメリットが
享受できる。

以下は2年前に作成したもの。

サブスタンスペインター 自作アルファの追加

ここ最近はHoudiniを使ってRBD(Rigid Body Dynamics)のシーンを作っている。

今回は転がる球体のテクスチャーをサブスタンスペインターで作成したので、その備忘録。

サブスタンスペインターのアルファには日本語フォントが1種類用意されているが、
あまり格好の良いフォントではないので、今回は漢字のアルファ画像をPhotoshopで作成した。
アルファ画像にするファイルは白黒画像をpngファイルで保存すればOK。

以下のように作成した画像ファイルをサブスタンスペインターのアルファセクションへ
ドラッグ&ドロップで追加して、読み込み設定を行う。

読み込みモードには以下の3種類がある。

  1. 現在のセッション : 今回の作業のみで使用
  2. プロジェクト 「ファイル名」 : プロジェクトファイル内だけで使用
  3. ライブラリ 「your_asset」 : ライブラリに登録して毎回使用

以下のようにブラシに読み込んだアルファ画像を設定し、
ジオメトリをクリックして漢字ペイントを行った。

 

Houdini FLIP その9

Houdiniを使った流体シミュレーションその9。
今回はタコ型のクリーチャーを作ってみた。


タコのモデリング、アニメーション、シミュレーション、レンダリングは全てHoudiniで行った。
テクスチャーはSubstance Painterを使用。コンポジットはNuke。

今回作成したタコのサイズはかなり大きいため、FLIPシミュレーションのプールサイズは
100m x 40m x 100mの巨大サイズになった。


流体のパーティクル数はFLIPが約2500万、ホワイトウォーターが約2000万。
さらにタコの触手から放出される自前で実装したホワイトウォーターに3500万程度を使用した。

作業PCのメモリは128GBだが、この規模のシミュレーションでは全然足りなかったため
様々な最適化を行って計算が回るように調整した。

また、FLIPシミュレーションのプール周辺付近におけるサーフェイスの連続性をキープするために
VEXで補正プログラムを書いた。