カテゴリー別アーカイブ: houdini

Houdini Fur

Houdiniで動物頭部のファーを作ってみた。

Houdini Fur Groom Wip01 from Shuichi Sakuma on Vimeo.

シェルフからファーをセットアップすると、以下の三段階に処理が分かれる。

  1. 皮膚メッシュ(Geometryノード)
  2. ガイドカーブ(Guide Groomノード)
  3. ファー生成(Hair Generateノード)

これにより皮膚メッシュ上にガイドカーブが作成され、
ガイドカーブによってファーの流れを決定し、
レンダリング時にプロシージャルにファーを生成するフローが作られる。


以下Guide Groomノード、Hair Generateノードの中身。
(両ノードとも最初は空の状態から開始)
 

今回はブラシ、カーブ、ペイント、プロシージャルな変形、VEXをフル活用して
頭部ファーの複雑な流れを作った。以下はその概要。

ブラシによるグルーミングは局所的なファーの流れを形成したり
ファーの隙間を埋めるために使用した。

ペイントは顔の部位ごとにファーの長さ・縮れ量・クランプ半径・クランプ強度を
コントロールするために使用し、今回は様々なパターンを描いた。

カーブは顔面のファーの流れを定義するために使用。
カーブからvelフィールドを作成し、ファーをフィールドに沿って移流させた。

プロシージャルな変形は、ファーに対して一律に長さを調整したり
クランプや縮れを形成するために使用した。

VEXはファーの特定部分(図では頬の部分)の毛先付近だけに変形処理を追加する際に使用した。

レンダリング結果

Houdini 戦車アニメーション

以前Houdiniで作成した戦車モデルにアニメーションを設定してみた。
今回、戦車自体はOBJレベルでキーフレームアニメーションで動かし、
キャタピラと車輪の動きはSOPレベルでVEXを使ってコントロールしている。

拙著「Houdini SOP&VEX編」に記載しているキャタピラを動かすためのVEXを
凹凸地形にも対応できるように今回改良した。

戦車は旋回の方向によって左右のキャタピラと車輪の回転を
逆にする必要があるが、それにも対応できるようにした。

このためにCHOPで微分(差分)計算を行った。
具体的には、OBJレベルで作成した戦車の回転アニメーションをCHOPに読み込み
Slope CHOPでチャンネルカーブに対して微分操作を行った。

これによりチャンネルカーブの傾き情報(速度)が得られるため
「傾きがプラスだったら右旋回中、マイナスだったら左旋回中」のようにVEXの中で判定し、
適切な方向にキャタピラと車輪を回転させることができるようになる。
戦車の前進・後退の判定にもSlope CHOPを使用した。
(ちなみに、微分の逆の積分操作はArea CHOP)

テクスチャーはSubstance Painterを使って作成し、
最後にPyroで土煙を加えて完成。

Houdini カメラ振動

先日作成したロボットウォークアニメーションに足の接地と同期するカメラの振動を加えてみた。

以下簡単な手順

1.ロボットの足裏の接地タイミングに合わせてCHOP内でパルス波を作成。パルス波を作成するために、足裏にポイントを一つ仕込んでおきSOP内でそのポイントが接地した最初のタイミングで赤に変わるようにしておく。そしてCHOP内のGeometryノードによってその赤情報をチャンネルに変換。

2.CHOP内のCopyノードを使って、パルス波をトリガーにして振動しながら徐々に減衰していくチャンネルをコピー。

3.Channel Wrangle内のVEXによってチャンネル形状を加工

4.カメラのtyパラメーターからchop関数を使って、チャンネルを参照


CHOPコンテキストのCopyノードはSOPのものとは使用方法が根本的に異なる。左側の入力はパルス波のようなトリガーシグナル、右側の入力はトリガーシグナルに応じてコピーされるチャンネルになっている。

今回初めてChannel Wrangleを使用したが、いつ追加されたのだろう?
WrangleによってCHOP内でもVEXが使用できるため以前よりもチャンネルの加工が
直感的にできるようなった。

Houdiniのアニメーション作業

Houdiniでシンプルなモデルを作って、リギング作業→キーフレーム作業→エフェクト作業を
通してやってみた。

一般的にHoudiniというとエフェクト分野に強いイメージがあるが
通常のキーフレームを主体とするアニメーション作業も十分やりやすい。
またHoudiniでアニメーション作業を行った場合には、シームレスに
そのあとのエフェクト作業につなげられるというメリットもある。

Houdini カールノイズ関数について

Houdiniにおけるカールノイズについて。

カールノイズを使用したサンプルファイルでよく見かけるのは
「CurlNoiseノード」を使用した以下のようなVOPネットワーク。

CurlNoiseノードが返すベクトルは湧き出しや吸い込みがない(発散がない)流れ場を構成するが、
CurlNoiseノードにはSDFSigned Distance Field)が接続できるようになっているので
ボリュームとの衝突を回避させることもできる。

CurlNoiseのCurlとはベクトル解析におけるベクトル場における回転を意味する。
ベクトル場に対してこの「回転」という演算を施せば、ある地点の渦度を表すベクトル(回転軸+回転の大きさ)が手に入る。また、ベクトル解析の基本公式により、回転演算によって求めたベクトル場には発散がないことが保証される。(この「発散がない」ことによってパーティクルを「いい感じ」に流すことができる)

しかし実は、このVOPノードに1対1で対応するVEX関数はヘルプには記載されていない。
ヘルプに記載されている以下の2つのカールノイズ関数(curlnoise関数、curlxnoise関数)は
位置に応じたカールノイズは生成できるが、衝突用のSDFボリュームを渡すための引数がない。

vector  curlnoise(vector xyz)
vector  curlnoise(vector4 xyzt)

しかし、以下のようにVEXコードの先頭でvoplib.hをインクルードすることで
CurlNoiseノードに対応するVEX関数(vop_curlNoiseVV関数)を使用することができるようになる。これによりVEX関数だけで障害物ボリュームとの衝突を避けつつ、発散がない流れ場に沿ってポイントを移流させるアニメーションが可能となる。

#include <voplib.h>

v@curlnoise = vop_curlNoiseVV(
    @P, 1*{1,1,1}/*周波数*/, {0,0,0}/*オフセット*/, {0,0,0}/*法線ベクトル(0の場合はSDFからgradient(勾配)を自動的に計算)*/,
    "pnoise"/*ノイズタイプ(Perlin Noise)*/, @OpInput2/*衝突用のSDFボリューム*/,
    3/*乱流*/, 1/*衝突の際に速度の反転*/,
    0.3/*振幅*/, 0.5/*粗さ*/, 1/*減衰*/, 
    0/*サーフェイスまでの距離(衝突ボリュームを設定しない際に有効)*/, 
    0.1/*衝突回避処理を発動する際のサーフェイスからの距離*/, 
    0.0001/*ステップサイズ*/);

@v = {0,0.2,0}+v@curlnoise;// 上昇するよう+Y軸方向に指向性を与えて速度とする
@v = clamp(@v,-0.4,0.4);// 速度の大きさに制限をかける
@P += @v*@TimeInc;// 速度から位置を求める積分計算

実際のVEXは以下のようにSolver内のWrangleノードに書いてやればよい。


vop_curlNoiseVV関数は、2007年のRobert Bridson氏の論文
「Curl-Noise for Procedural Fluid Flow」を忠実に実装したものとなっている。
https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph2007-curlnoise.pdf

 

ちなみに、CurlNoise VOPノードを右クリックして「View VEX Code」を選択すると
VOPが生成するソースコードを見ることができる。
そこでvop_curlNoiseVV関数の名称が確認できる。


vop_curlNoise関数は2つあるが、それぞれ以下のような役割。
vop_curlNoiseVV関数 → 最初の引数にvector(位置)を渡す。vectorが返る
vop_curlNoiseVP関数 → 最初の引数にvector4(位置+時間)を渡す。vectorが返る

【まとめ】カールノイズを使用するメリット
1.  VEX関数のみで吸い込みや湧き出しのないベクトル場が作成できる
2.  SDFボリュームを関数の引数に設定すれば、障害物との衝突を回避しながらの移流ができる
3.  SOPだけで計算が完結するため処理が軽い

Windowsではvoplib.hは以下のパスにある。(**はバージョン)
(C:\Program Files\Side Effects Software\Houdini 17.
.***\houdini\vex\include)

Houdini 煙いろいろ

Houdiniでいろいろなタイプのスモークを作ってみた。

スモークのvelフィールドのベースとなるのは、
パーティクルの速度ベクトル(@v)や、
シミュレーション後のRBDの速度ベクトルをVDBに変換したもの(@collisionvel)

パーティクルの速度ベクトルはDOP内でGas Particles To Field、
VDBはVolume Sourceのcollisionプリセットで読み込んだ。

●ドラゴンブレススモーク
パーティクル速度ベース

Houdini dragon fire wip v1 from shuichi sakuma on Vimeo.

●ビル崩落スモーク
RBDの速度ボリュームベース

Houdini Buiding destruction wip from shuichi sakuma on Vimeo.

●放射状スモーク
拙書「Houdini SOP&VEX編」の花火(8-7)がベース
パーティクル速度ベース

Houdini radial smoke test from shuichi sakuma on Vimeo.

●地割れスモーク
RBDの速度ボリュームベース

Houdini ground smoke test from shuichi sakuma on Vimeo.

●爆発スモーク
RBDの速度ボリュームベース

Houdini Box explosion test from shuichi sakuma on Vimeo.

Houdiniで作る廃墟

「廃墟」をテーマにHoudiniでアニメーションを作成してみた。

今回Houdiniでやったこと

・ドラゴンの羽・尾・首アニメーション(Bend+CHOP)
・ドラゴン群衆ユニットの移動タイミング、ロール回転制御、群れのばらつき具合の制御(VEX)
・背景ビルモデリング(VEX、VDB)
・ツタ植物モデリング(VEX)
・ビルに対するツタの巻き付け制御(VEX)
・デブリパーティクル(DOP)
・DOF、フォグ(COP)

ツタの成長方向はVEXでコントロールし
どんな形状のビルに対しても巻き付くようにVEXで制御した。

今回、コンポジットはCOPで行ったが
昔に比べるとUIが圧倒的にわかりやすくなっており使用しやすくなった。

シーンの規模が大きくなるほど、Houdiniを使用するメリットが実感できる。

Houdini Denoiser

HoudiniのDenoiser テスト。
実際の制作においてはDenoiserの使いどころは限定されると思うが
モーションブラー時にはかなり効果がある。

以下の動画はデフォルトの設定(ピクセルサンプル3×3)でmantraでレンダリングしたもの。
モーションブラー特有のグレインノイズが綺麗に除去されている。

Houdini denoiser test from shuichi sakuma on Vimeo.

Houdini CHOPによる慣性効果

ベンドアニメーションにCHOPで慣性効果を加えて
羽ばたきアニメーションを作ってみた。フリーモデル使用。

今回ボーンは一切使用していないので、羽、首、尾のアニメーションは全てSOP内で作成できた。
CHOPはHoudiniではあまりスポットライトが当たらない機能だが
実際に使ってみるとキャラクターアニメーションとの親和性が高いことを実感する。

Houdini dragon wing test from shuichi sakuma on Vimeo.

Houdini 戦車モデリング

Houdiniでフルスクラッチで戦車を作成してみた。

この戦車を作るために作成したSOPノードの数は合計788個。
全て四角ポリゴンで作成した。

ラジアルメニューを中心に作業を進めていけば
他のDCCツールと同様にHoudiniでもモデリングは十分できる。
さらに現在はTopoBuildノードがあるため、キャラクターなどの
ハードサーフェース以外のモデルにも対応できるはずだ。